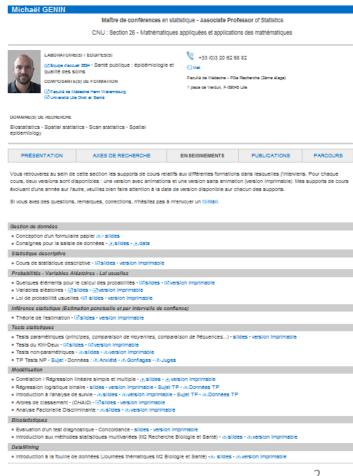


# Quels modèles statistiques simples à utiliser?

Recherche Clinique en Gériatrie

JB. Beuscart – CHU de Lille –Université de Lille jean-baptiste.beuscart@univ-lille.fr


#### Les statistiques dans la recherche médicale Méthodes statistiques multivariées

#### Michael Genin, Alain Duhamel, Patrick Devos

#### Université de Lille 2

EA 2694 - Santé Publique : Epidémiologie et Qualité des soins michael.genin@univ-lille2.fr





## Plan de la présentation

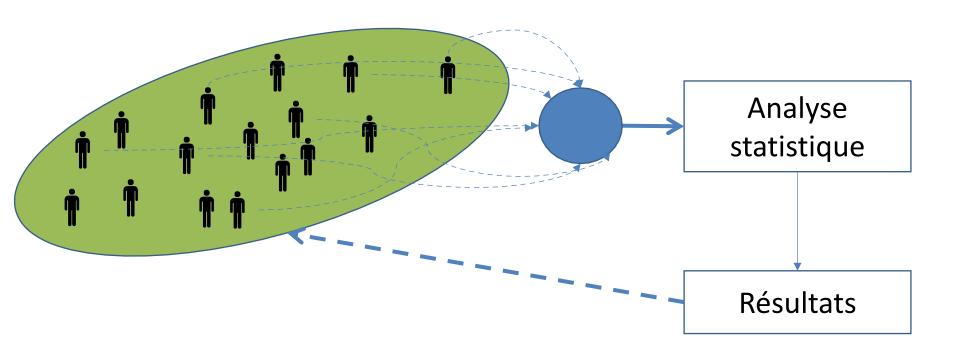
- Objectif: Présenter une vue générale des modèles statistiques simples à utiliser en recherche clinique en médecine
  - 1. Enjeux
  - 2. Variables
  - 3. Méthodes
  - 4. Perspectives

## Plan de la présentation

- Objectif: Présenter une vue générale des modèles statistiques simples à utiliser en recherche clinique en médecine
  - 1. Enjeux
  - 2. Variables
  - 3. Méthodes
  - 4. Perspectives

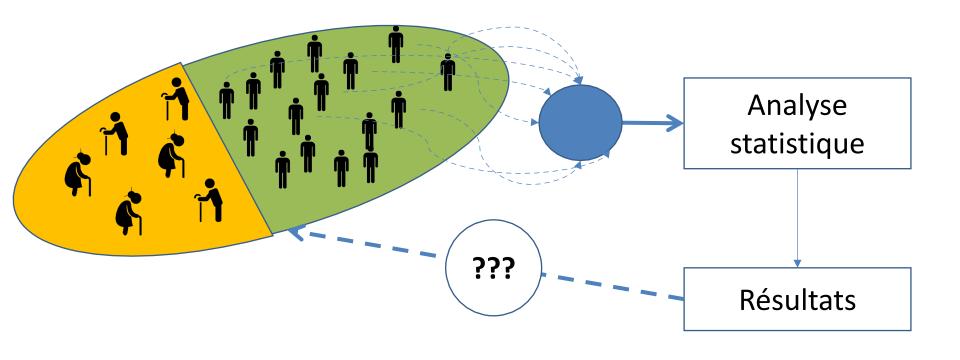
## La Statistique et les Biostatistiques

- La STATISTIQUE : discipline traitant du recueil (plans d'expérience, sondages, ...), du traitement et de l'interprétation de données caractérisées par une grande variabilité.
- Partie des mathématiques appliquées, utilisant la théorie des probabilités.
- Beaucoup de domaines d'applications
  - Sondages : enquêtes d'opinion
  - Industrie : contrôle de qualité
  - Marketing: scoring, profil de consommateurs
  - Médecine : épidémiologie, recherche clinique
  - ......
- Statistiques appliquées à la Médecine = BIOSTATISTIQUES
  - Données spécifiques : variabilité inter et intra, données interprétées, ...
  - Méthodes spécifiques : survie, courbes ROC, plans d'expérience...


## Méthodologie statistique

- Employer bien sûr la "bonne" procédure statistique pendant l'analyse !!!
- MAIS cela ne suffit pas ...
- Choisir le bon type d'étude
- Choisir le bon plan d'expérience
- Choisir les bons critères de jugement
- Définir les variables recueillies
- Qualité des données recueillies
- Analyse statistique rigoureuse (tests, modèles, ...)
- Bonne interprétation des résultats

Avant l'étude!!!


Fin d'étude

## Inférence statistique



- On désire étudier une population P :
  - On tire un échantillon E de taille n issu de P
  - On analyse les caractéristiques de E
  - On généralise à P

## Inférence statistique



Définir très précisément la population que l'on désire étudier !!

Définir très précisément les mesure effectuées sur la population étudiée

## Messages

- 1) LA base : qualité des méthodes d'échantillonage et de mesure des données recueillies au cours de l'étude
- 2) Une analyse statistique de haute qualité sur des données de mauvaise qualité = étude de mauvaise qualité

## Plan de la présentation

- Objectif: Présenter une vue générale des modèles statistiques simples à utiliser en recherche clinique en médecine
  - 1. Enjeux
  - 2. Variables
  - 3. Méthodes
  - 4. Perspectives

## Méthodes Statistiques : définitions générales

- INDIVIDU : « Objet » sur lequel un ou plusieurs caractères peuvent être observés.
- **POPULATION**: Ensemble des individus pris en considération.
- VARIABLE: peut être qualitative (attribut) ou quantitative (numérique).

#### Différents types de variables

- Variables Quantitatives
  - Variables quantitatives continues (âge, poids, taille,)
  - Variables quantitatives discrètes (ne peuvent prendre qu'un nombre limité de valeurs. ex : nombre de personnes dans un foyer)
- Variables Qualitatives
  - Variables qualitatives binaires (sexe : Masculin / Féminin)
  - Variables qualitatives nominales (Couleurs des yeux : marrons, bleus, verts, gris)
  - Variables qualitatives ordinales (Appréciation : Mauvais, Passable, Bien, Très bien, Excellent)

#### Toujours décrire les données avant de faire les analyses inférentielles (tests)

- Pour décrire les échantillons et vérifier leur représentativité mais aussi
- Pour le contrôle de qualité des données : individus aberrants, valeurs manquantes
- Pour choisir les tests adaptés aux distributions ("lois") des variables

## Dans le cadre des méthodes statistiques inférentielles :

#### Une variable est définie par

- son type (quantitative, qualitative)
- son statut (++)

#### 2 statuts possibles :

- Variables explicatives
  - = variables indépendantes, variables exogènes, prédicteurs...
  - Variables dont on se sert pour expliquer le phénomène à Itude.
  - Il sagit de la cause présumée.
- Variable à expliquer
  - = variable dépendante, variable endogène, critère de jugement...
  - Variable dont on veut expliquer la variation dans une recherche

Question d'étude : les enfants ayant eu des affections chroniques décèdent-ils plus en réanimation ?

**Statut**: Variables explicatives

Admission et pendant séjour

- Qualitative binaire (oui/non)
- Critère de jugementte
- Sortie de réanimation

Question d'étude : les enfants ayant eu des affections chroniques décèdent-ils plus en réanimation ?

**Statut**: Variables explicatives

Admission et pendant séjour

- Qualitative binaire (oui/non)
- Critère de jugement
- Sortie de réanimation

Question d'étude : les enfants ayant eu des affections chroniques décèdent-ils plus en réanimation ?

#### Statut: Variables explicatives

- Admission et pendant séjour
  - surpoids : poids (Kg)
  - Index cardiaque : petit, moyen, gd
  - Immunodépression : oui/non
  - ...

- Critère de jugement
- → Dárès (mui/mon)

Question d'étude : les enfants ayant eu des affections chroniques décèdent-ils plus en réanimation ?

#### Statut: Variables explicatives

- Admission et pendant séjour
  - surpoids : poids (Kg)
  - Index cardiaque : petit, moyen, gd
  - Immunodépression : oui/non
  - ...

- Qualitative binaire (oui/non)
- Critère de jugement
- Sortie de réanimation
  - ⇒ Décès (oui/non)

Question d'étude : les enfants ayant eu des affections chroniques ont-ils une durée de séjour plus longue en réanimation?

**Statut**: Variables explicatives

Admission et pendant séjour

- Quantiative
- Critère de jugement
- Sortie de réanimation

Question d'étude : les enfants ayant eu des affections chroniques ont-ils une durée de séjour plus longue en réanimation ?

#### **Statut**: Variables explicatives

- Admission et pendant séjour
  - surpoids : poids (Kg)
  - Index cardiaque : petit, moyen, gd
  - Immunodépression : oui/non
  - ...

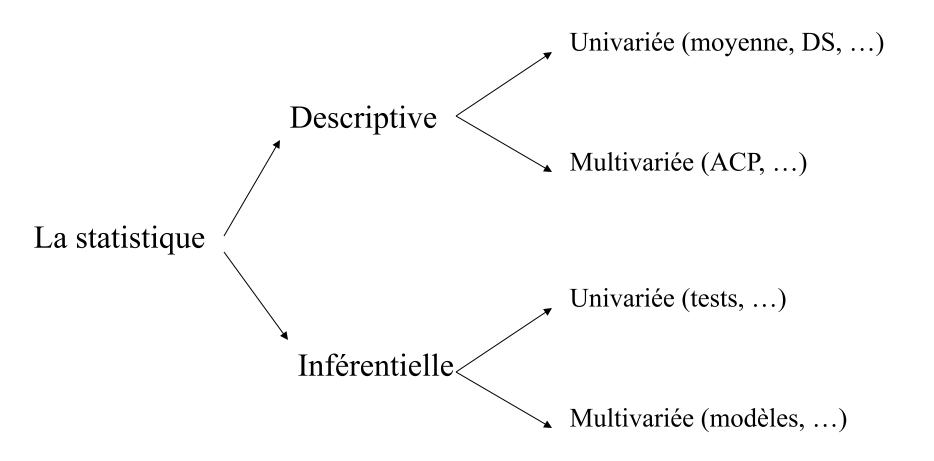
- Quantiative
- Critère de jugement
- Sortie de réanimation

Question d'étude : les enfants ayant eu des affections chroniques ont-ils une durée de séjour plus longue en réanimation ?

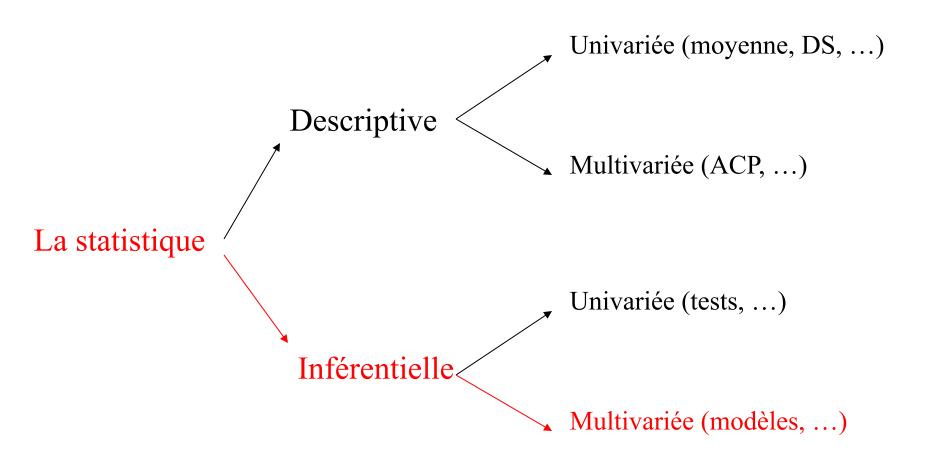
#### Statut: Variables explicatives

- Admission et pendant séjour
  - surpoids : poids (Kg)
  - Index cardiaque : petit, moyen, gd
  - Immunodépression : oui/non
  - ...

- Quantiative
- Critère de jugement
- Sortie de réanimation
  - ⇒ Durée de séjour (j)


## Messages

- 1) Les méthodes statistiques à employer dépendent toujours du type de variables à analyser
- 2) Pour les analyses descriptives :
  - On identifie le type de chaque variable
  - Toutes les variables ont elles le même type, ou mélange?
- 3) Pour les analyses inférentielles, on détermine en plus :
  - La variable à expliquer
  - Les variables explicatives


## Plan de la présentation

- Objectif: Présenter une vue générale des modèles statistiques simples à utiliser en recherche clinique en médecine
  - 1. Enjeux
  - 2. Variables
  - 3. Méthodes
  - 4. Perspectives

## Les méthodes statistiques



## Les méthodes statistiques



## Principales méthodes

#### Régression multiple

- Un critère numérique (variable à expliquer)
- Des variables explicatives numériques ou binaires

#### Analyse discriminante

- Un critère qualitatif (variable à expliquer)
- Des variables explicatives numériques ou binaires

#### Régression logistique

- Ajustement ou recherche de facteur de risque
- Un critère binaire
- Des variables explicatives numériques ou binaires

#### Mesures répétées

 les valeurs dun critère (principal ou secondaire) sont relevées à différents temps

#### Analyses de survie (études pronostiques)

- Un événement qui peut se produire à un temps t
- Des variables explicatives numériques ou binaires

## Les 3 grandes classes de modèle multivarié

#### Régression linéaire multiple

- La variable à expliquer est continue
- Ex : albumine = f(poids, taille, apports nutritionnels, démence...)

#### Régression logistique

- La variable à expliquer est catégorielle
- Ex : démence (0/1) = f(niveau socio-éducatif, pression artérielle, médicaments...)
- Ex: décès dans les 3 mois (0/1) = f(confusion, marche, HTA, IC, IRC...)

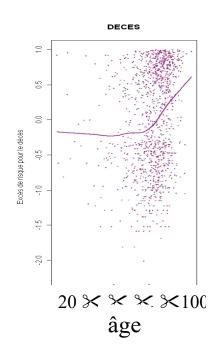
#### Modèle de Survie (modèle de Cox)

- La variable à expliquer est le temps écoulé avant événement (couple  $\{T_i; D_i\}$ )
- Ex : temps écoulé avant décès = f(confusion, marche, HTA, IC, IRC...)

## Messages

- 1) Le modèle à utiliser dépend de la nature de la variable à expliquer
- 2) Il faut être très clair sur l'objectif de votre recherche = quelle est la question posée ?

## Plan de la présentation


- Objectif: Présenter une vue générale des modèles statistiques simples à utiliser en recherche clinique en médecine
  - 1. Enjeux
  - 2. Variables
  - 3. Méthodes
  - 4. Perspectives

## Aspects techniques

- Un modèle statistique multivarié décrit une association entre une variable à expliquer et des variables explicatives
- Choix du modèle : selon la nature de la variable à expliquer
- Variables explicatives à inclure dans le modèle initial:
  - Choix des variables initiales
  - Codage de variables continues
- Sélection des variables
  - Procédures automatiques
  - Stratégies de sélection
- Adéquation du modèle

## Un modèle impose une « forme » à la réalité

- Hypothèses du modèle utilisé : il faut les connaître et les tester
- Exemple : hypothèse de log-linéarité
  - Modèle de Cox et modèle Logistique
  - Ex : Augmentation du risque de décès est identique pour  $30 \rightarrow 50$  ans et  $60 \rightarrow 80$  ans



Variable à expliquer : temps avant décès

Individus: patients en dialyse péritonéale

**Population:** Registre REIN

VA explicative : âge

Rejet de l'hypothèse de log-linéarité

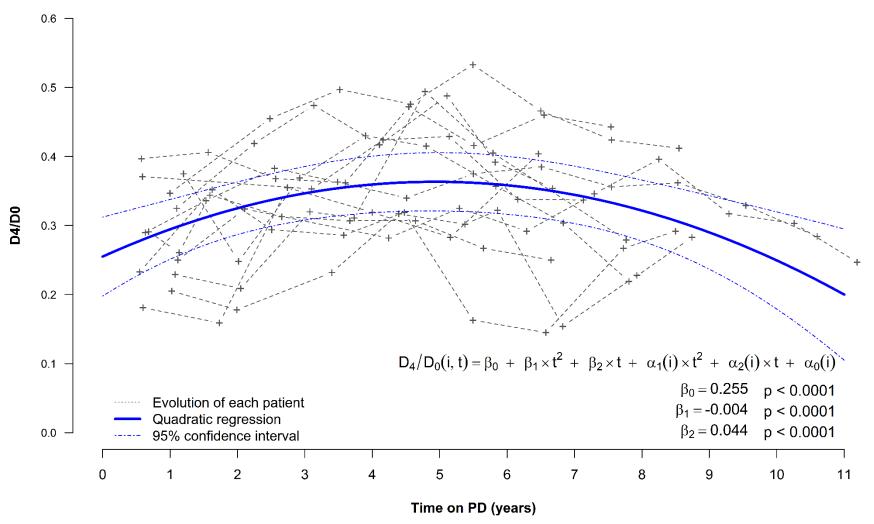
## Un modèle impose une « forme » à la réalité

• Hypothèses du modèle utilisé : il faut les connaître et les tester

Une analyse statistique multivariée de bonne qualité demande une analyse par un expert en statistique :

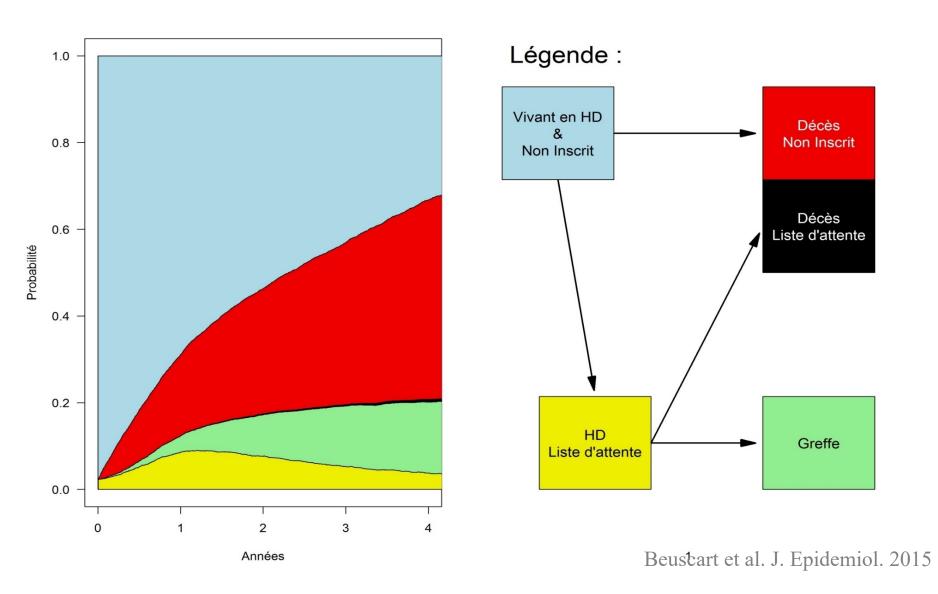
- Maitrise du modèle
- Maitrise de la programmation
- Test sur les variables
- Méthodes de sélection
- Adéquation du modèle
- Maitrise de la rédaction (publication)
- Etc...

Bac +5 à +10 : c'est un métier!!!

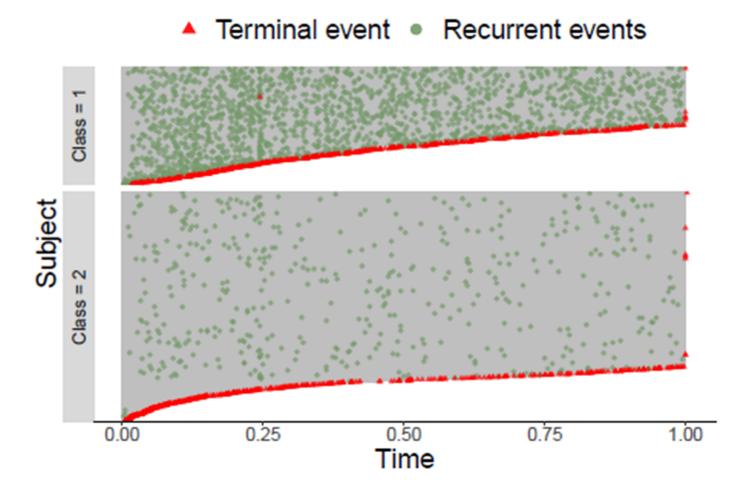

## Modèle linéaire multiple : adéquation

| Partie 2                                                     |    |
|--------------------------------------------------------------|----|
| Outils diagnostiques                                         | 2  |
| <ul> <li>éléments diagonaux de la matrice chapeau</li> </ul> | 8  |
| • résidus                                                    | 16 |
| mesure d'influence                                           | 27 |
| covratio                                                     | 32 |
| dfbetas                                                      | 35 |
| graphe de régression partielle                               | 41 |
| <ul> <li>que faire des observations influentes</li> </ul>    | 50 |
| Validité du modèle                                           | 52 |
| normalité                                                    | 53 |
| homoscédasticité                                             | 62 |
| linéarité                                                    | 67 |
| Colinéarité                                                  | 74 |
| Sélection des variables                                      | 79 |

D----1:- 0


Cours de M2 : même pas d'expérience une fois qu'on a appris ces items!

## Le modèle peut être adapté à la questions / aux données




Beuscart et al. BMC Nephrol. 2017

## La question du bon modèle peut être un sujet de recherche



## La question du bon modèle peut être un sujet de recherche



Latent class analysis, DAMAGE cohort, J. Carratero

## Votre travail

#### AVANT de rencontrer les experts en statistique

- Bien faire la bibliographie sur le sujet
- Discuter de la question au vu de la bibliographie
- Essayer de formaliser la question (sur présentation PPT, rédaction minimale avec les VA à expliquer/explicatives, etc.)

### Rencontre et échange avec les statisticiens

- 1ère rencontre : projet, rationnel, question posée, VA, modèles retrouvés dans les articles de biblio, etc. => permet de déterminer le projet d'analyse statistique
- Travailler la rédaction du projet avec tous les acteurs (experts médicaux, méthodologistes, statisticiens, régulations locales, etc.)
- 2<sup>ème</sup> rencontre (ou échanges mails) : validation analyse statistique, nombre de sujets nécessaires

## Messages

- 1) Un modèle statistique impose une forme à la réalité décrite. Il faut donc vérifier si les hypothèses du modèle sont respectées.
- 2) Une analyse multivariée se fait de préférence avec un expert en statistique qui maîtrise le modèle utilisé
- 3) Votre travail : être très clair sur la population, les individus, la variable à expliquer, les variables explicatives... et la question posée!